Roll No	•••••					Question Booklet Number
O. M. R. Serial No.						

M. Sc. (Biochemistry) (Second Semester) (NEP) EXAMINATION, 2022-23

BIOENERGETICS AND INTERMEDIARY METABOLISM

Paper Code							
L	0	2	0	8	0	1	T

Time: 1:30 Hours]

Questions Booklet Series

A

[Maximum Marks : 75

Instructions to the Examinee:

- 1. Do not open the booklet unless you are asked to do so.
- The booklet contains 100 questions.
 Examinee is required to answer 75 questions in the OMR Answer-Sheet provided and not in the question booklet.
 All questions carry equal marks.
- 3. Examine the Booklet and the OMR Answer-Sheet very carefully before you proceed. Faulty question booklet due to missing or duplicate pages/questions or having any other discrepancy should be got immediately replaced.

परीक्षार्थियों के लिए निर्देश :

- प्रश्न-पुस्तिका को तब तक न खोलें जब तक आपसे कहा न जाए।
- 2. प्रश्न-पुस्तिका में 100 प्रश्न हैं। परीक्षार्थी को 75 प्रश्नों को केवल दी गई OMR आन्सर-शीट पर ही हल करना है, प्रश्न-पुस्तिका पर नहीं। सभी प्रश्नों के अंक समान हैं।
- 3. प्रश्नों के उत्तर अंकित करने से पूर्व प्रश्न-पुस्तिका तथा

 OMR आन्सर-शीट को सावधानीपूर्वक देख लें। दोषपूर्ण

 प्रश्न-पुस्तिका जिसमें कुछ भाग छपने से छूट गए हों या

 प्रश्न एक से अधिक बार छप गए हों या उसमें किसी

 अन्य प्रकार की कमी हो, तो उसे तुरन्त बदल लें।

(शेष निर्देश अन्तिम पृष्ठ पर)

(Only for Rough Work)

	resid	ues of:		(A)	Cellulose glycogen
	(A)	Amino acids		(B)	Starch
	(B)	Lipids		(C)	Mucopolysaccharide
	(C)	Glucose		(D)	All of the above
	(D)	Fructose	6.	An	anticoagulant commonly present in
2.	A n	nolecule of cellulose is made of		anim	nal body is:
	abou	t:		(A)	Chondronitin sulphate
	(A)	50,000-100,000 glucose molecules		(B)	Keratan sulphate
	(B)	150,000-200,000 glucose molecules		(C)	Heparin
	(C)	300,000-400,000 fructose		(D)	Hyaluronic acid
		molecules	7.	Fron	n the oxidation of one molecule of
	(D)	6,000-10,000 glucose molecules		palm	nitic acid (fatty acid), the number of
3.	Whic	ch one is a polysaccharide?		ATP	molecules gained as net is:
	(A)	Starch		(A)	132
	(B)	Cellulose		(B)	129
	(C)	Glycogen		(C)	33
	(D)	All of the above		(D)	102
4.	A fib	rous polysaccharide is:	8.	The	smallest storage polysaccharide is:
	(A)	Glycogen		(A)	Inulin
	(B)	Starch		(B)	Amylose
	(C)	Cellulose		(C)	Amylopectin
	(D)	Collagen		(D)	Dextrose

(3)

Set-A

5.

Which is an unbranched glucan?

Cellulose is formed by union of repeated

1.

L020	801T	(4)			Set-A
		tissue			(D)	Chitin
	(D)	Pancreas and storage connective	connective		(C)	Cellulose
	(C)	Spleen and liver			(B)	Starch
	(B)	Liver and muscles			(A)	RUBISCO
	, ,	•		16.	The i	most abundant organic molecule is:
	(A)	Kindneys and liver			(D)	4 glucose residues
12.	Glyc	ogen is stored inside cells of:	ls of :		(C)	6 glucose residues
	(D)	Proplastids			(B)	8-10 glucose residues
	(C)	Amyloplasts			(A)	10-14 glucose residues
	(B)	Mitochondria			havir	ng:
	(A)	Lysosomes			helic	ally acid with each turn of helix
11.		re are starch grains located?		15.	Main	chain of glycogen and starch is
11.	Who	ma ana atamah amaina lagatad 9			(D)	ATP synthase
		sulphate and mucin			(C)	Cytochrome bc ₁
	(D)	Hyaluronic acid, chondroitin			(B)	Cytochrome aa ₃
	(C)	Hemicellulose, pectin and mucin			(A)	NADH dehydrogenase
	(B)	Mucin, callose and heparin			comp	blex (Complex 1) of ETS ?
	(A)	Slime, phycocolloid and pectin		14.	Whic	ch of the following is the first
10.	A mi	acopolysaccharide is :			(D)	Cyt, b, c, a ₃ , a
	(D)	Keratan surphate			(C)	Cyt, c, b, a, a ₃
	(D)	Keratan sulphate			(B)	Cyt, a, a, b, c
	(C)	Heparin			(A)	Cyt, b, c, a, a ₃
	(B)	Hyaluronic acid			produ	action of ATP?
	(A)	Chitin			seque	ence of electron acceptors in ETS for

13.

Which of the following is the correct

A structural polysaccharide:

9.

- 17. What is wrong?
 - (A) Cellulose is most abundant organic molecule
 - (B) Chitin is the second most abundant organic molecule
 - (C) Cellulose is the most abundant heteropolysaccharide
 - (D) Chitin is heteropolysaccharide
- 18. Biological oxidation of respiratory substrate causes :
 - (A) Gain of oxygen
 - (B) Gain of hydrogen
 - (C) Loss of oxygen
 - (D) Loss of hydrogen
- 19. Which one yields the highest energy per gram ?
 - (A) Carbohydrate
 - (B) Protein
 - (C) Fat
 - (D) Amino acids
- 20. Which of the following is the complex III of ETS?
 - (A) NADH dehydrogenase
 - (B) Cytochrome aa₃
 - (C) ATP synthase
 - (D) Cytocohrome bc₁

- 21. Oxidative phosphorylation takes place in:
 - (A) Mitochondria
 - (B) Cytoplasm
 - (C) Golgi bodies
 - (D) Nucleus
- 22. More energy is produced in aerobic respiration than anaerobic respiration because in anaerobic respiration :
 - (A) Food is incompletely oxidized
 - (B) Very few enzymes are involved
 - (C) Oxygen is not required
 - (D) Alcohol is produced
- 23. The combined action of aminotransferase and glutamata dehydrogenase is referred as:
 - (A) Transdeamination
 - (B) Transacetylation
 - (C) Transdemethylation
 - (D) None of the above
- 24. R. Q. stands for:
 - (A) Resistance coefficient
 - (B) Replicase concentration
 - (C) Respiratory quotient
 - (D) Reticular concentration

- 25. The pathways linking the citric acid and urea cycles are called:
 - (A) asparate-glutathione shunt
 - (B) aspartate-arginiosuccinate shunt
 - (C) aspartate-alpha ketoglutarate shunt
 - (D) aspartate-phosphate shunt
- 26. In respiration of substrate of organic acids, the R. Q. shall be:
 - (A) phenylalanine hydroxylase
 - (B) phenylalanine dehydroxylase
 - (C) phenylalanine lyase
 - (D) phenylalanine isomerase
- 27. Phenylalanine is converted into tyrosine by the enzyme :
 - (A) Mallic acid
 - (B) Malanoic acid
 - (C) Fat
 - (D) Starch
- 28. Carbon monoxide inhibits mitochondrial electron transport by :
 - (A) inhibiting the electron transfer of complex I
 - (B) blocking electron transport at the level of the cytochrome b-cytochrome C complex
 - (C) binding to the oxygen-binding site of cytochorome oxidase
 - (D) binding to haemoglobin in the erythrocytes and therefore blocking the transport of oxygen to tissues

- 29. ATP synthesis by ATP synthase is driven by the movement of :
 - (A) protons
 - (B) NADH
 - (C) electrons
 - (D) All of the above
- 30. Amount of energy available per mole of oxygen used in biological oxidation is :
 - (A) 114 kcal
 - (B) 686 kal
 - (C) 256 kcal
 - (D) 60 kcal
- 31. Number of ATP formed per molecule of oxygen used in respiration is :
 - (A) 16
 - (B) 8
 - (C) 6
 - (D) 4
- 32. Urea cycle provides intermediate for which pathway?
 - (A) Glycolysis
 - (B) HMP-shunt
 - (C) TCA cycle
 - (D) Gluconeogenesis

33.	How many ATP are required for the	36.	For the start of respiration, a living cell
	formation of carbamoyl phosphate ?		requires:
	(A) 2		(A) Glucose
			(B) Glucose + O_2
			(C) O_2
	(C) 4		(D) Glucose + ATP
	(D) 1	37.	generates from beta oxidation
34.	Which of the following complexes of		of fatty acids and enter TCA cycle to bind
	ETS does not account for the pumping		with oxaloacetic acid.
	out of protons from the mitochondrial		(A) Pyruvic acid
	-		(B) Acetyl CoA
	matrix ?		(C) Glucose
	(A) Complex I		(D) Glyceraldehyde-3-phosphate
	(B) Complex III	38.	Most common mineral activator of
	(C) Complex II		glycolytic enzymes is:
	(D) Complex IV		(A) Fe
2 -			(B) Zn
35.	What is common in common pathway of		(C) Mg
	aerobic respiration ?		(D) Mn
	(A) Glycolysis in both aerobic and	39.	Phosphorylation of glucose with the help
	anaerobic respiration		of ATP and Hexokinase produces:
	(B) Krebs cycle common with HMP		(A) (Cl. 1.1.1.4
	(C) Terminal oxidation in both aerobic		(A) Glucose 1-phosphate
	and anaerobic respiration		(B) Glucose 6-diphosphate
	(D) Krebs cycle in both aerobic and		(C) Glucose 1, 6-diphosphate
	anaerobic respiration		(D) Fructose 1, 6-diposphate

(7)

Set-A

- 40. Number of oxygen molecules required for glycolytic breakdown of one glucose molecule is:
 - (A) Zero
 - (B) Three
 - (C) Six
 - (D) Thirty eight
- 41. Which one is removed from substrate during glycolysis?
 - (A) Hydrogen
 - (B) Electrons
 - (C) Both (A) and (B)
 - (D) Oxygen
- 42. Which one is inhibited if the cells contain excess of ATP ?
 - (A) Krebs cycle
 - (B) Glycolysis
 - (C) Oxidative phosphorylation
 - (D) Electron
- 43. Excess of ATP inhibits:
 - (A) Phosphofructokinase
 - (B) Pyruvic dehydrogenase
 - (C) Triose phosphate isomerase
 - (D) Glyceraldehyde phosphate

- 44. Which of the following products of glucose oxidation are necessary for oxidative phosphorylation?
 - (A) NADH and FADH₂
 - (B) Pyruvate
 - (C) ATP synthase
 - (D) Acetyl CoA
- 45. Which of the following is true for cytochrome C oxidase complex ?
 - (A) It donates electrons to O_2 .
 - (B) It accepts electrons from Cyt C.
 - (C) It pumps two protons out of the mitochondrial matrix.
 - (D) All of the above
- 46. Site of glycolysis or EMP is:
 - (A) Mitochondria
 - (B) Cytoplasm
 - (C) E.R.
 - (D) Ribosomes
- 47. The Intermediate of glycolysis which undergoes lysis or splitting is:
 - (A) Dihydroxyacetone 3-phosphate
 - (B) Fructose 1, 6-disphosphate
 - (C) Glyceraldehyde 3-phosphate
 - (D) Glucose 6-phosphate

48.	Phosph	noglyceraldehyde and dihydroxy	52.	Whic	h of the following amino acids are
	acetone	e phosphate are :		exclu	sively ketogenic ?
	(A) I	somers		(A)	Asparagine
	(B) F	Polymers		(B)	Threonine
	(C) T	Tautomers		(C)	Proline
	(D) S	Synonyms		` /	Leucine
49.	Substra	ate phosphorylation is the		(D)	Leucine
	format	ion of:	53.	Form	ation of phosphoenol pyruvate from
	(A) A	ATP		2-pho	osphoglycerate is:
	(B) A	AMP		(A)	Dehydration
	(C) A	ADP		(B)	Dehydrogenation
	(D) F	Pyruvic acid		(C)	Oxidation
50.	Compo	ound shared by the TCA and urea		(D)	Hydration
	cycle:		54.	Ketor	ne bodies are :
	(A) A	Alpha-ketoglutarate	J 4 .		
	(B) C	Citrulline		(A)	acetoacetate
	(C) F	Fumaric acid		(B)	acetone
	(D) S	Succinate		(C)	β-hydroxybutyrate
51.	Comm	on nitrogen acceptor for all		(D)	All of the above
	reactio	ns involving transaminases:	55.	An ar	mphibolic pathway is:
	(A) A	Alpha-ketoglutarate		(A)	TCA cycle
	(B) (Oxalo-acetate		(B)	Calvin cycle
	(C) F	Pyruvate		(C)	Terminal oxidation
	(D) A	Acetoacetate		(D)	Electron transport chain

56.	Which of the following produces acetyl	60.	Oxidation of pyruvate froms:
	CoA directly ?		(A) Acetyl COA
	(A) Lysine		(B) NADH
	(B) Phenylalanine		(C) CO ₂
	(C) Isoleucine		(D) All of the above
	(D) Alanine	61.	Removal of hydrogen and CO ₂ from
57.	Oxidation of pyruvate is accompanied		substrate is called:
	by:		(A) Decarboxylation
	(A) Oxidation of NAD+		(B) Oxidation
	(B) Reduction of NAD+		(C) Oxidative decarboxylation
	(C) Oxidation of CoA		(D) Reductive decarboxylation
	(D) Reduction of CoA	62.	Urine of a person contains abnormal
58.	Coenzyme A helps in:	02.	quantities of during prolonged
	(A) Oxidative phosphorylation		fasting.
	(B) Substrate level phosphorylation		(A) amino acids
	(C) Breakdown of pyruvate		(B) ketones
	(D) Activation of acetyl group		(C) glucose
59.	Number of carbon atoms present in citric		(D) fats
	acid, oxaloacetic and ad pyruvic acid are		
	respectively:	63.	A single turn of Krebs cycle yields:
	(A) 6, 3 and 3		(A) 1 FADH ₂ , 1 NADH and 1 ATP
	(B) 6, 4 and 3		(B) 1 FADH ₂ , 2 NADH and 1 ATP
	(C) 5, 4 and 3		(C) 1 FADH ₂ , 3 NADH and 1 ATP
	(D) 6, 4 and 2		(D) 2 FADH ₂ , 2 NADH and 2 ATP

(10)

Set-A

Protons (as NADH, FADH₂) taking part When parathyroid gland is surgically 64. 67. removed from a mammal, the blood level in oxidative phosphorylation enter of: mitochondria as: calcium and phosphorus increase (A) Glucose (B) calcium and phosphorus decrease Oxaloacetic acid (B) (C) calcium increases while that of Acetyl COA (C) phosphorus decreases (D) Pyruvate calcium decreases while that of (D) phosphorous increases 65. Excess of neurotransmitter causes: 68. Cyclic AMP (cAMP) is degraded to AMP increase in the number of active (A) by an enzyme called: receptors restriction endonuclease decrease in the number of active (B) (B) adenyl cyclase receptors (C) phosphodiesterase (C) inactivation of all receptors (D) ATPase (D) modification of receptors 69. Which of the following one Inner mitochondrial membrane allows the 66. glycolytic enzymes is inhibited by passage of: fluoride? Glucose (A) (A) lactate dehydrogenase (B) **Pyruvate** (B) pyruvate kinase **NADH** (C) (C) enolase

(D)

hexokinase

(D) Oxaloacetate

- 70. Which one of the following groups of amino acids contains sulphur?
 - (A) cystine, methionine and cysteine
 - (B) arginine, citrulline and ornithine
 - (C) glycine, proline and serine
 - (D) leucine, lysine and methionine
- 71. A complex enzyme system of mitochondria functional outside Krebs cycle is:
 - (A) Pyruvate kinase
 - (B) Pyruvate dehydrogenase
 - (C) Enolase
 - (D) a-Ketogulatrate dehydrogenase
- 72. A complex enzyme system function in Krebs cycle is:
 - (A) Citrate synthetase
 - (B) Isocitrate dehydrogenase
 - (C) Oxalosuccinate decarboxylase
 - (D) a-ketoglutarate dehydrogenase
- 73. Hydration reaction occurs in Krebs cycle during conversing of :
 - (A) Acetyl CoA to citric acid
 - (B) a-ketoglutarate to succinyl CoA
 - (C) Succinate to fumarate
 - (D) Fumarate to malate

- 74. Fat has two components, glycerol and fatty acids. They enter common pathway of expirations as:
 - (A) DIHAP and a-ketoglutrate
 - (B) DIHAP and acetyl COA
 - (C) Glyceric acid and acetyl CoA
 - (D) Glyceric acid and a-ketoglutarate
- 75. Amino acids enter respiratory pathway:
 - (A) After domination
 - (B) As fumarate and oxaloacetate
 - (C) Acetyl CoA, succinyl CoA and aketoglutarate
 - (D) All of the above
- 76. In Krebs cycle, malate hands over hydrogen to:
 - (A) NAD+
 - (B) FAD
 - (C) FMN
 - (D) Oxaloacetate
- 77. When succinate is oxidised in Krebs cycle, its hydrogen is accepted by :
 - (A) NAD+
 - (B) FAD
 - (C) FMN
 - (D) Fumarate

L0208	301T	(13)			Set-A
	(D)	All of the above		(D)	None of the above
	(C)	Cytochromes		(C)	Increasing negative potential
	(B)	FeS and CoQ		(B)	Increasing positive potential
	(A)	Flavin nucleotides		(A)	Decreasing positive potential
	elect	ron transport are :		acco	rding to:
81.	Cher	nicals taking part in respiratory	85.	Elect	tron acceptors in ETS are arranged
	(D)	Phosphorylation		(D)	Cyt C1.
	(C)	Oxidative phosphorylation		(C)	CoQ
	(B)	Substrate phosphorylation		(B)	FeS
	(A)	Photophosphorylation		(A)	Cyt az
	calle	d:		mito	chondrial membrane is:
80.		nation of ATP is respiration is	84.	The	mobile electron carrier of
00	F	and a second of ATD in the second of the sec		(D)	Both (B) and (C)
	(D)	All of the above		(C)	CoQ
	(C)	Oxidative phosphorylation		(B)	FMN
	(B)	Electron transport		(A)	FeS
	(A)	Synthesis of methabolic water			chondrial chamber ?
79.	Term	ninal oxidation comprises:	83.	Whic	ch one passes protons to outer
	(D)	Cu		(D)	NAD+, FMN and CoQ
	(C)	Fe		(C)	FAD, FeS and CoQ
	(B)	Mg		(B)	FMN, FeS and CoQ
	(A)	Mn		(A)	FAD, NAD+ and CoQ
78.		eral activator of enzyme aconitase is:	82.		cytochrome members of respiratory- ron transport chain are :
70	Mino	aral activator of anaryma aconitaca is	92	Mone	autochroma mambara of raspiratory

86.	In the respiratory chain, the only soluble	89. Which one is the final electron carrier?)
	cytochrome is:	(A) OAA	
	(A) cytochrome a	(B) NADP+	
	(B) cytochrome b	(C) Cytochrome oxidase	
	(C) cytochrome c	(D) Pyruvate	
	(D) cytochrome a ₃		úl
87.	Trypsin differs from pepsin in that :	90. In aerobic respiration which of t following is a reactant?	ne
	(A) trypsin digests protein in an acidic	(A) CO_2	
	medium while pepsin does so in an	(B) O_2	
	alkaline medium (B) trypsin digests protein in an	(C) H_2O	
	alkaline medium while pepsin does	(D) Sugars	
	to an acidic medium	91. Which one provides greater amount	of
	(C) trypsin is secreaed from the gastric	energy per molecule ?	
	glands while pepsin in secreted from the pancreas	(A) ATP	
	(D) trypsin production is influenced by	(B) ADP	
	peptidergic neurohormones, while	(C) CO_2	
	pepsin is influenced by steroids	(D) H_2O	
88.	Number of cytochrome molecules	92. Number of ATP molecules formed duri	ng
	required for the transfer of a pair of	complete oxidation of fructose 1,	6-
	electrons though ETS is:	diphosphate is:	
	(A) 1	(A) 20	
	(B) 2	(B) 32	
	(C) 3	(C) 36	
	(D) 4	(D) 40	

(14)

Set-A

93.	Rote	none, antimycin A and cyanide	97.	Aldo	esterone helps in the :
	inhib	its:		(A)	conversation of sodium and water
	(A)	mitochondria respiratory chain			and elimination of potassium
	(B)	mitochondria outer membrane		(B)	elimination of sodium, potassium and water
	(C)	lysosomes		(C)	conservation of potassium, water
	(D)	All of the above			and elimination of sodium
94.	Cyto	chromes take part in:		(D)	conservation of sodium, potassium and water
	(A)	Respiration			
	(B)	Photosynthesis	98.		ytochromes, electrons are picked up released by:
	(C)	Electron transport			•
	(D)	Oxidation		(A)	Fe
95.	What	is true for respiration ?		(B) (C)	Mo Zn
		-		, ,	Cu
	(A)	Oxygen is essential		(D)	Cu
	(B)	Oxygen combines with carbon to	99.	In 1	muscles and nerves, cytoplasmic
		form CO ₂		NAI	OH yields :
	(C)	Oxygen combines with hydrogen to		(A)	3 ATP
		produce water		(B)	2 ATP
	(D)	Oxygen is not essential		(C)	1 ATP
96.	Majo	r function of respiration is to		(D)	No ATP
	produ	ice:	100.	Phos	phogluconate shunt occurs in:
	(A)	NADH (H)		(A)	Mitochondria
	(B)	ATP		(B)	Chloroplasts
	(C)	Pyruvate		(C)	Cytoplasm
	(D)	C ₂ H ₅ OH		(D)	Both (A) and (B)

(15)

Set-A

4. Four alternative answers are mentioned for each question as—A, B, C & D in the booklet. The candidate has to choose the correct answer and mark the same in the OMR Answer-Sheet as per the direction:

Example:

Question:

Q. 1 (A) (C) (D) (Q. 2 (A) (B) (D) (D)

Q.3 A \bigcirc C D

Illegible answers with cutting and over-writing or half filled circle will be cancelled.

- 5. Each question carries equal marks. Marks will be awarded according to the number of correct answers you have.
- 6. All answers are to be given on OMR Answer sheet only. Answers given anywhere other than the place specified in the answer sheet will not be considered valid.
- 7. Before writing anything on the OMR Answer Sheet, all the instructions given in it should be read carefully.
- 8. After the completion of the examination candidates should leave the examination hall only after providing their OMR Answer Sheet to the invigilator. Candidate can carry their Question Booklet.
- 9. There will be no negative marking.
- 10. Rough work, if any, should be done on the blank pages provided for the purpose in the booklet.
- 11. To bring and use of log-book, calculator, pager and cellular phone in examination hall is prohibited.
- 12. In case of any difference found in English and Hindi version of the question, the English version of the question will be held authentic.
- Impt.: On opening the question booklet, first check that all the pages of the question booklet are printed properly. If there is ny discrepancy in the question Booklet, then after showing it to the invigilator, get another question Booklet of the same series.

4. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार सम्भावित उत्तर—
A, B, C एवं D हैं। परीक्षार्थी को उन चारों विकल्पों में से
सही उत्तर छाँटना है। उत्तर को OMR आन्सर-शीट में
सम्बन्धित प्रश्न संख्या में निम्न प्रकार भरना है:

उदाहरण :

प्रश्न :

 प्रश्न 1 (A)
 (C)
 (D)

 प्रश्न 2 (A)
 (B)
 (D)

 (A)
 (D)

अपठनीय उत्तर या ऐसे उत्तर जिन्हें काटा या बदला गया है, या गोले में आधा भरकर दिया गया, उन्हें निरस्त कर दिया जाएगा।

- 5. प्रत्येक प्रश्न के अंक समान हैं। आपके जितने उत्तर सही होंगे, उन्हीं के अनुसार अंक प्रदान किये जायेंगे।
- 6. सभी उत्तर केवल ओ. एम. आर. उत्तर-पत्रक (OMR Answer Sheet) पर ही दिये जाने हैं। उत्तर-पत्रक में निर्धारित स्थान के अलावा अन्यत्र कहीं पर दिया गया उत्तर मान्य नहीं होगा।
- 7. ओ. एम. आर. उत्तर-पत्रक (OMR Answer Sheet) पर कुछ भी लिखने से पूर्व उसमें दिये गये सभी अनुदेशों को सावधानीपूर्वक पढ लिया जाये।
- 8. परीक्षा समाप्ति के उपरान्त परीक्षार्थी कक्ष निरीक्षक को अपनी OMR Answer Sheet उपलब्ध कराने के बाद ही परीक्षा कक्ष से प्रस्थान करें। परीक्षार्थी अपने साथ प्रश्न-पुस्तिका ले जा सकते हैं।
- 9. निगेटिव मार्किंग नहीं है।
- 10. कोई भी रफ कार्य, प्रश्न-पुस्तिका के अन्त में, रफ-कार्य के लिए दिए खाली पेज पर ही किया जाना चाहिए।
- 11. परीक्षा-कक्ष में लॉग-बुक, कैलकुलेटर, पेजर तथा सेल्युलर फोन ले जाना तथा उसका उपयोग करना वर्जित है।
- 12. प्रश्न के हिन्दी एवं अंग्रेजी रूपान्तरण में भिन्नता होने की दशा में प्रश्न का अंग्रेजी रूपान्तरण ही मान्य होगा।

महत्वपूर्ण : प्रश्नपुस्तिका खोलने पर प्रथमतः जाँच कर देख लें कि प्रश्न-पुस्तिका के सभी पृष्ठ भलीभाँति छपे हुए हैं। यदि प्रश्नपुस्तिका में कोई कमी हो, तो कक्षनिरीक्षक को दिखाकर उसी सिरीज की दूसरी प्रश्न-पुस्तिका प्राप्त कर लें।